
Further Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 a

le
x@

be
nt

on
ia

n.
co

m

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age. More Fun with Rays

1

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

2

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

Ray-tracing / ray-marching:
It doesn’t take much code

3

A ray is defined parametrically as

P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We can expand this equation to three dimensions, x, y and z:

x(t) = xE + txD
y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

4

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0

Substituting equation (α) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv_1) + yN(yE+tyD-yv_1) + zN(zE+tzD-zv_1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons

5

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.

○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…

v…
vn

vi

vi+1

P

eeR

Point in convex polygon

6

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are proportional to the subtriangle
areas of the three vertices.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

7

Barycentric coordinates

8

// Compute barycentric coordinates (u, v, w) for
// point p with respect to triangle (a, b, c)
vec3 barycentric(vec3 p, vec3 a, vec3 b, vec3 c) {
 vec3 v0 = b - a, v1 = c - a, v2 = p - a;
 float d00 = dot(v0, v0);
 float d01 = dot(v0, v1);
 float d11 = dot(v1, v1);
 float d20 = dot(v2, v0);
 float d21 = dot(v2, v1);
 float denom = d00 * d11 - d01 * d01;
 float v = (d11 * d20 - d01 * d21) / denom;
 float w = (d00 * d21 - d01 * d20) / denom;
 float u = 1.0 - v - w;
 return vec3(u, v, w);
}

Code credit: Christer Ericson, Real-Time Collision Detection (2004)
(adapted to GLSL for this lecture)

Hard shadows

To simulate shadows with rays, fire a ray from
P towards each light Li. If the ray hits another
object before the light, then discard Li in the
sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

9

D

O

P

L
1

Softer shadows
Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

10

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

11

E

P

θ

L

S

Spotlights

D

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.

● Raising m will tighten the spotlight,
but leave the edges soft.

● If you’d prefer a hard-edged spotlight
of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

12

1 Or sound waves or other waves

Transparency and Refraction

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.
For realism, DT should deviate (slightly) from D. The angle of
incidence of a ray of light where it strikes a surface is the acute
angle between the ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

13

E D
DT

Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the
inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

14

Refraction

Refraction for rays

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

15

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

16

Fresnel term

Example from:
https://www.scratchapixel.com/lessons/3d-basic-rendering/intro
duction-to-shading/reflection-refraction-fresnel

● Light is more likely to be
reflected rather than
transmitted near grazing angles

● This effect is modelled by Fresnel equation, which gives
the probability that a photon is reflected rather than
transmitted (or absorbed)

17

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS
the misidentification of a signal frequency,

introducing distortion or error.
"high-frequency sounds are prone to aliasing"
2. COMPUTING
the distortion of a reproduced image so that

curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

18

Aliasing

-

=

19

Anti-aliasing
Fundamentally, the problem with aliasing is that we’re sampling an infinitely
continuous function (the color of the scene) with a finite, discrete function (the
pixels of the image).

One solution to this is super-sampling. If we fire multiple rays through each
pixel, we can average the colors
computed for every ray together
to a single blended color.

To avoid heavy computational load
And also avoid sub-super-sampling
artifacts, consider using jittered
super-sampling.

Image source: www.svi.nl

20

http://www.svi.nl/

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit:
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 21

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization
method for ray-based rendering
is the use of bounding volumes.

Nested bounding volumes
allow the rapid culling of large
portions of geometry

● Test against the bounding
volume of the top of the scene
graph and then work down.

22

Types of bounding volumes
The goal is to accelerate volumetric tests, such as “does the ray hit
the cow?” → speed trumps precision

● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight

Axis-aligned bounding boxes
● max and min of x/y/z.

Bounding spheres
● max of radius from some rough center

Bounding cylinders
● common in early FPS games

23

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.

● Pro: Rays can skip
subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

24

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.

● Pro: The ray can skip empty
cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty cells

● Popular for voxelized games
(ex: Minecraft)

25

The BSP tree pre-partitions the scene
into objects in front of, on, and behind
a tree of planes.
● This gives an ordering in which to test

scene objects against your ray
● When you fire a ray into the scene, you

test all near-side objects before testing
far-side objects.

Challenges:
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

26

A B

C D E F

A

B

C
E

F
D

Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either side
of each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

27

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

28

References
Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)

29

http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

